- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Adams, Henry D (2)
-
Blanco, Alexander S (2)
-
Sparks, Aaron M (2)
-
Tinkham, Wade T (2)
-
Boschetti, Luigi (1)
-
Cochrane, Mark A (1)
-
Dahlen, Joseph (1)
-
Hardman, Douglas D (1)
-
Harley, Grant L (1)
-
Hoffman, Chad M (1)
-
Huang, Li (1)
-
Hudak, Andrew T (1)
-
Johnson, Daniel M (1)
-
Kok, John R (1)
-
Kremens, Robert L (1)
-
Lad, Lauren E (1)
-
Lutz, James A (1)
-
Moberly, James G (1)
-
Partelli-Feltrin, Raquel (1)
-
Rainsford, Scott W (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Increasing frequency of droughts and wildfire are sparking concerns that these compounded disturbance events are pushing forested ecosystems beyond recovery. An improved understanding of how compounded events affect tree physiology and mortality is needed given the reliance of fire management planning on accurate estimates of postfire tree mortality. In this study, we use a toxicological dose-response approach to quantify the impact of variable-intensity drought and fire on the physiology and mortality of Pinus monticola and Pseudotsuga menziesii saplings. We show that the dose-response relationship between fire intensity and mortality shifts toward increased vulnerability under drought, indicating higher mortality with increasing drought at any fire intensity. The trajectory we observed in postfire chlorophyll fluorescence, an indicator of photosynthetic efficiency and stress, was an effective early warning sign of impending tree death. Postfire mortality modeling shows that accurate mortality classification can be achieved using prefire physiology and morphology metrics combined with fire intensity. Variable importance measures indicate that physiological condition and fire intensity have greater influence on the classification accuracy than morphological metrics. The wide range in drought and fire responses observed between this study and others highlights the need for more research on compound disturbance effects. Study Implications: An improved understanding of how drought and fire affect tree physiology and mortality is needed by natural resource managers looking to predict postfire tree mortality. This study advances our compound disturbance understanding by subjecting conifer saplings to variable drought and fire intensities and quantifying and modeling moderate-term recovery and mortality. The results show reduced physiological recovery and amplified mortality in saplings exposed to greater drought and fire intensity. Overall, this study highlights the importance of physiological condition when modeling tree mortality and could potentially be used to inform current postfire tree mortality models.more » « less
-
Smith, Alistair_M S; Partelli-Feltrin, Raquel; Sparks, Aaron M; Moberly, James G; Adams, Henry D; Schwilk, Dylan W; Tinkham, Wade T; Kok, John R; Wilson, David R; Thompson, Alex; et al (, International Journal of Wildland Fire)Background The increased interest in why and how trees die from fire has led to several syntheses of the potential mechanisms of fire-induced tree mortality. However, these generally neglect to consider experimental methods used to simulate fire behaviour conditions. Aims To describe, evaluate the appropriateness of and provide a historical timeline of the different approaches that have been used to simulate fire behaviour in fire-induced tree mortality studies. Methods We conducted a historical review of the different actual and fire proxy methods that have been used to further our understanding of fire-induced tree mortality. Key results Most studies that assess the mechanisms of fire-induced tree mortality in laboratory settings make use of fire proxies instead of real fires and use cut branches instead of live plants. Implications Further research should assess mechanisms of fire-induced tree mortality using live plants in paired combustion laboratory and landscape fire experiments.more » « lessFree, publicly-accessible full text available January 1, 2026
An official website of the United States government
